PRESENTATION on Learnings from Tasks

INDEX

- Stage 1 Transformations ulletDOF, RoboAnalyzer, Forward Kinematics, Inverse Kinematics, D-H parameters
- **Stage 2 Kinematics** •

MATLAB program of Forward Kinematics Inverse Kinematics for 2 & 3 planar manipulator

- **Stage 3 Motion Planning** •
- **Stage 4 Final Execution** •

Nitish Kumar (Team Coordinator)

Abhishek Shimpi (Member)

RoboAnalyzer Online Competition 2021

Team A3

Forward Kinematics

In forward kinematics for
positions, the joint
positions, i.e., the angles
of revolute
joints and the displacements
of prismatic joints, are
prescribed. The task is to
find
the end-effector's

configuration or pose, i.e.,
its position and orientation.

We define D-H Parameters.

- 3 DOF with PRP configuration
 - Four D-H Parameter
- 1. Joint offset (b) m
- **2.** Joint Angle (θ) deg
- 3. Link length (a) m
- 4. Twist angle (α) deg

Inverse Kinematics

The inverse kinematics problem consists of the determination of the joint variables corresponding to a given endeffector's orientation and position

Motion video of 3DOF PRP

t Type	Joint Offset (b) m	Joint Angle (theta) deg	Link Length (a) m	Twist Angle (alpha) deg	Initial Value (JV) deg or m	Final Value (JV) deg or m
natic	Variable	90	0.2	135	0.1	0.2
olute	0.15	Variable	0.2	180	90	180
natic	Variable	90	0.3	90	0.1	0.2

Output of Inverse Kinematics

Forward Kinematics of a Two-link Planar Arm

cosθ	-sin0	0	Px
sinθ	cosθ	0	Ру
0	0	1	0
0	0	0	1

 $Px = a_1.cos\theta_1 + a_2.cos\theta_{12}$ $Py = a_1.sin\theta_1 + a2.sin\theta_{12}$ $\theta_{12} = \theta_1 + \theta_2 - \theta_i$

Forward Kinematics of a Three-link Planar Arm

cosθ	-sinθ	0	Px
sin0	cosθ	0	Ру
0	0	1	0
0	0	0	1

$$\begin{aligned} & Px = a_1.\cos\theta_1 + a_2.\cos\theta_{12} + a_3.\cos\theta_{123} \\ & Py = a_1.\sin\theta_1 + a_2.\sin\theta_{12} + a_3.\cos\theta_{123} \\ & \theta_{12} = \theta_1 + \theta_2 - \theta_i \\ & \theta_{123} = \theta_{12} + \theta_3 \end{aligned}$$

Inverse Kinematics of a Two-link Planar Arm

I. Algebraic solution: Equating elements (2,1), (1,1), (1,4), and (2,4) of the two matrices, we get:

$$S_{12} = n_{\gamma} \text{ and } C_{12} = n_{x} \to \theta_{12} = ATAN2 (n_{y}, n_{x})$$

$$a_{2}C_{12} + a_{1}C_{1} = p_{x} \text{ or } a_{2}n_{x} + a_{1}C_{1} = p_{x} \to C_{1} = \frac{p_{x} - a_{2}n_{x}}{a_{1}}$$

$$a_{2}S_{12} + a_{1}S_{1} = p_{\gamma} \text{ or } a_{2}n_{\gamma} + a_{1}S_{1} = p_{\gamma} \to S_{1} = \frac{p_{\gamma} - a_{2}n_{\gamma}}{a_{1}}$$

$$\theta_{1} = ATAN2(S_{1}, C_{1}) = ATAN2\left(\frac{p_{\gamma} - a_{2}n_{\gamma}}{a_{1}}, \frac{p_{x} - a_{2}n_{x}}{a_{1}}\right)$$

Since θ_1 and θ_{12} are known, θ_2 can also be calculated.

Motion Planning of Three-link Arm to form a Circle

4a	noboAnalyzer	8									- D X
PL	File HTM Mor	lule	Virtual Robots	Help Fee	dback Conta	ect Us					
Pu ning.n	File HTIM Moo	tule Graph	Virtual Robots	Help Fee	dback Conta	let Us	ľ			•	Browser 3) Model Graph C* C* C* C* C* Analyses Time (s) No of Steps Time (s) No of Steps FKin IDyn IKin FDyn ~ Gravity(m/s**2) (b) Links
	D.H Parameters										
	Default Robots	Joint No	Joint Type	Joint Offset (b) m	Joint Angle (theta) deg	Link Length (a) m	Twist Angle (alpha) deg	Initial Value (JV) deg or m	Final Value (JV) deg orm	Visualize DH Link Config EE Config Joint Trajectory	*
	Select Robot	1	Revolute	0	Variable	3	0	-47.58795377	47.58795377	O Cycloidal O Cubic	
	3R 🗸 🔘	2	Revolute	0	Variable	2	0	90	90	O Cosine O Quintic	
	Oustom Bohote	3	Revolute	0	Variable	1	0	17.58795377	17.58795377	File Input	
cle.cs											
Ħ	Vitual Robots	-	9	🧼 🎢							へ 🌡 🌐 🗣 ĝi (4) 📭 🦽 ENG 05:04 PM 😡

Stage 3 Motion Planning

With the help of MATLAB we create an csv file which has geometry file which can be drawn through robot in RoboAnalyzer Software.

This this the variable value which will be exported to csv to be use in Roboanlyser

TLAB R2014a															_	-	×	
HOME PLOTS	APPS VARIABLE	VIEW							1 2 22 -				. e = (Search Do	cumentati	on		
🖬 Open 🔻 Rows	Columns	Tra. spose																
ew from 🚔 Print 👻 1 lection 👻	1 Insert Delete	Sort •																
VARIABLE S	ELECTION EDI	τ																
🔹 🔁 🔀 📙 🕨 C: 🕨 Users	▶ nitis ▶ Desktop ▶ ROC21 ▶ 1	FASK_3															- 0	
ent Folder	Variables - pXarray			4												۲	× c	
Name 🔻	1200ut double		2														mm	
solenoid12.csv	1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	pXarray	× Iand	
solenoid.m	16 800				10.00										^	pYarray	× Wir	
etals.m	17 800									1					_	pZarray	Nopu	
tal_horizontal.xlsx	18 800																2	
tal_horizontal.csv	19 800																	
Hexa3D.m	20 800							_										
ull petal.csv	21 800														~			
-, Bug_vertical.csv	<		_	_	_	_	_	_	_		_		_	_	>			
	CALL CALL CALL CALL CALL	DOC210 TACK	C 21 motole and							× Wor	space						•	
	petals.m × +									Nam	e 🔺	Value		Min Max				
	19 %% for creat	ing below h	norizontal	line						N	nterY	191.5111		191.51 191.5	1		~	
	20 - tArray = lin	space(0,1,n	numIter);							1 ci	nterZ	191.5111		191.51 191.5	1			
	21 - for i=1:numI	ter (i) = three	au/i*#fin	alVDog						d d	bugVX	300x1 double	e :	800 800 160.6 160.6	0			
	22 - HpTarray 23 - HpZarray	(i) = tArra	ay(i)*Hfin	allPos;						d d	BugVZ	300x1 double	e	1005 1.357	9 2			
	24 - end	(-1(-)							Шн	finalYPos	191.5111		191.51 191.5	1			
	25									H	FinalZPos	-160.6969		-160.6160.0	6			
	26 %%for creati	ng semiciro	cle								nitYPos	0		0 0				
	27 - radius = Hfi	nalZPos;	Man = = i /	. .							oXarrav	1x300 double	e	0 0				
	20 - CenterY = Hf	inalYPos:	amax - p1/	2;						н 🗄 н	PYarray	1x300 double	e	352.1	8			
	30 - thetaArray =	linspace(t	thetaMin,	thetaMax	, numIter)	;				H H	pZarray	1x300 double	e	-160.6 160.6	9			
	31 - 🕞 for i=1:numI	ter									Bud	300		300 300				
	32 - HpYarray	(numIter+i)	= center	Y - radi	us*cos(the	taArray(i));				Imiter	100		100 100			-	
	33 - HpZarray	(numIter+i)	= -radiu	s*sin(th	etaArray(i));				🗄 n	ImPts	300		300 300				
	35 end									H o	rset	200	1-	200 200				
	36 %%for creati	ng above Ho	orizontal	line						p p	array	1200x1 doub	le	-352.1 352.1	8			
	37 - offset = 200	;								p	Larray	1200x1 doub	le	652.81 1.357	2			
	38 for i=1:numI	ter									d	160,6060		160.60 160.6	<u> </u>			
Is.m (Script)	39 - HpYarray	(offset+i)	= HpYarra	y(numIte:	r-i+1);					 ✓ ± t² 	rray	1x100 double	e	0 1			*	

4

Stage 4 Final Execution

In Final submission we executed the motion Planning again for Artistic Design with the help of MATLAB & csv file which we imported to Virtual Robot Manipulator. We are creating a fractal pattern Koch curve from matlab and importing the csv file containing the x, y and z coordinates of curve to Roboanalyser.

THANK YOU

				-			٥	
Joint Con	ontrol	Ca	artes	sian	Cont	trol	1	Reco
Joggin	ng							
Incre	rement	t						
Positi	ition (n	(mm)	A	ngle	(de	gree	es)	1
1] [0.5				OF
			_				_	
X: (۰	0			1	A:	٥	(
Y:	0	0			E	B:	0	(
	•	0			0	c: [0	(
tion	-							
Motion	n		~	2	12.15			
() Re	elative	/e	0	Abs	oiute	e	0	9 Hi
ositi	ition (m	mm)			And	1.0		
6 0	0				1413	gie ((de	gree
: (0				A	; 0	(de	gree
					A: B:	gie (0	(de	gree
Z: -	-100				A: B: C:	; 0 ; 0 ; 0	(de	gree
Z: -	-100	teps			A: B: C:	; 0 ; 0 ; 0	(de	gree
Z: - No. c 100 End-ef X: 79	-100 . of Ste) effecto	teps: tor Fr 43	: rame		A: B: C: itart	pe (0 0 0 179	(de))).95	gree Stop
Z: - No. c 100 End-ef X: 79 Y: 46	-100 of Ste 9 93.14	teps: tor Fr 43	rame	e]	A: B: C: itart	pe (: 0 : 0 : 0 179	(de	Stop
Z: - No. c 100 End-ef (; 79 (; 46	-100 of Ste 9 93.14	teps: tor Fr 43	rame	e]	A: B: C: itart	9 e (2 0 2 0 179 0.00	(de))).95	Stop 99
Z: - No. o 100 ind-ef : 79 : 46 : 10	-100 . of Ste 0 293.14 162.43	teps: tor Fr 43 39	rame	e]	A: B: C: itart B: [(C: [(179 0.00	(de))).95	Stop 99
Z: - No. o 100 ind-ef : 79 : 46 : 10 Hor	-100 . of Ste 93.14 162.43 003.0 omoge	teps: tor Fr 43 39 021 enec	rame	e]] Trar	A: B: C: itart B: (C: (C: (C: (179 0.00 0 0 0	(de)).95 02	Stop 99
d-ef 10 10 10 10	-100 . of Ste 0 /93.14 /02.43 003.0 omoge	teps: tor Fr 43 39 021 enec	rame	e]]	A: B: C: itart B: [(B: [(0	179 0.00 0 0 0	(de)).95 02 tior	Stop 99
- () ef 9 6 0	-100 of Ste 93.14 62.43 003.0 pmoge	teps: tor Fr 43 39 021 enec 0 -1	rame	e]] Trar	A: [1] B: [C: itart B: [C] C: [C] C: [C] 0 0	179 0.00 0 mat	(de)).99 02 tior]7]4	Stop 99
Z: - No. 0 100 100 46 10 Hor 1 0 0	-100 of Ste 9 193.14 162.43 003.0 000.0	teps: tor Fr 43 39 021 enec 0 -1 0	rame	e] (Trar	A: [1] C: itart A: [1] B: [(C: [(nsfor 0 0 -1	2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0	(de)).99 02 tior]7]4	Stop 99 93.1 62.4 003.