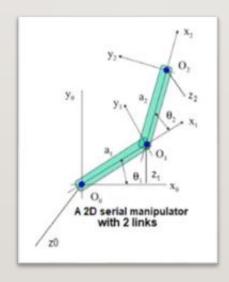
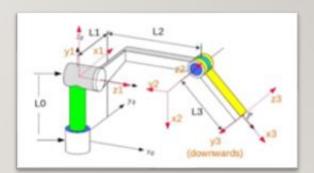
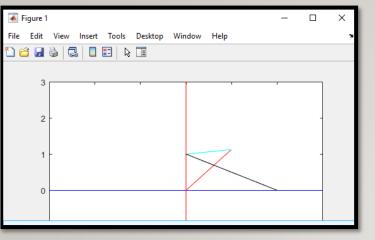
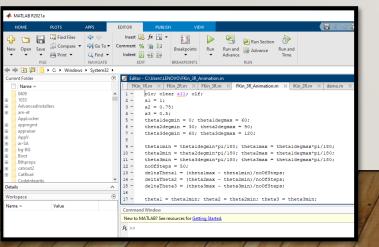

ROC - 2021

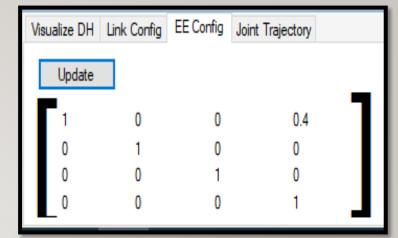

We certify that this project was undertaken by the members of **TEAM NO.B1** for the RoboAnalyzer based Online Competition (ROC) as a virtual summer internship conducted by Dr. Nayan M. Kakoty of Tezpur University, Assam in collaboration with Prof. S K Saha of IIT Delhi, New Delhi and Mr. Rajeevlochana C.G. of Amritha Vishwa Vidyapeetham, Bengaluru during May — July 2021.

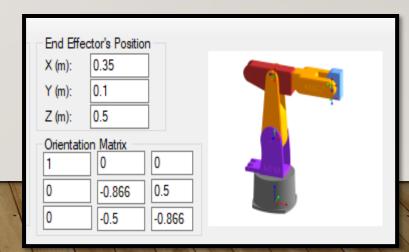

Team Members:


- I. Katta Tejashwini Reddy, JNTUH, Team co-Coordinator.
- 2. Peeyusha Kollipara, JNTUH, Team member.
- 3. Prithwish Sarkar, MAKAUT, WB, Team Co-Ordinator (Acting).

TASK – I (A moderated Output from all 4 members)

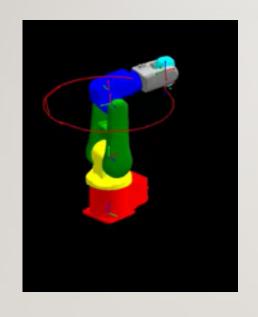


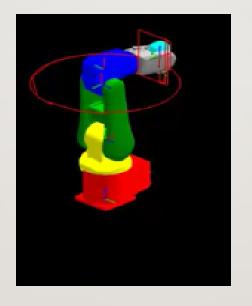

MATLAB -The Mathematical way

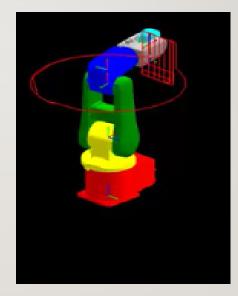

TASK-2

KEEP GOING, NEVER GIVE UP

- Searching for information...
- Going through the videos.
- Executing the code and getting the outputs.
- Using Roboanalyzer to perform the same experiment on the same robot with the same parameters.
 - Tally the results.
 - Job done !!!!

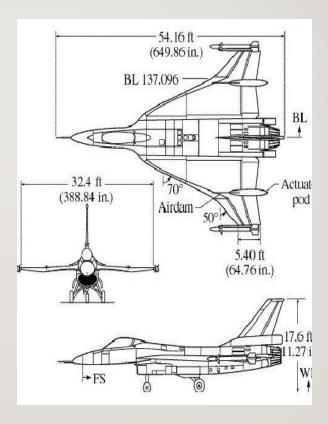

ROBOANALYZER
- The Analytical way

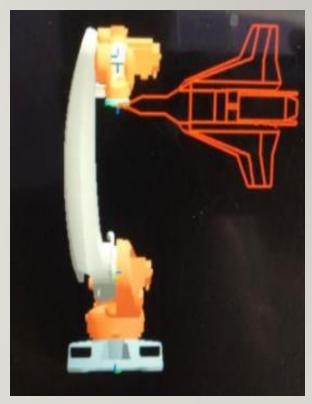



TASK - 3

DIVIDE AND RULE!!!!

(Each member takes up the part of the job they know the best)




TASK - 4

UNLEASHING CREATIVITY...

Zelitor - C:\Users\LENOVO\Downloads\final.m								
FKin_1R.m × FKin_2R.m × FKin_3R.m × FKin_3R_Animati								
18 - p = p0 + t*deltap;								
<pre>19 - pXarray(i) = p(1);</pre>								
20 - pYarray(i) = p(2);								
21 - pZarray(i) = p(3);								
22 - end								
23								
24 - deltap = p2 - p1;								
<pre>25 - existingtragectory = length(pXarray);</pre>								
26 - for i=1:n								
27 - t = tarray(i);								
28 - p = pl + t*deltap;								
29 - index = existingtragectory + i;								
<pre>30 - pXarray(index) = p(1);</pre>								
<pre>31 - pYarray(index) = p(2);</pre>								
<pre>32 - pZarray(index) = p(3);</pre>								
33 - Lend								
34								
35 - deltap = p3 - p2;								
<pre>36 - existingtragectory = length(pXarray);</pre>								
37 - for i=1:n								
38 - t = tarray(i);								
39 - p = p2 + t*deltap;								
40 - index = existingtragectory + i;								
41 - pXarray(index) = p(1);								
42 - pYarray(index) = p(2);								

A1	L	*	×	f _x 800			
4	А	В	С	D	Е	F	G
1	800	0	800	180	0	0	
2	800	1.0101	800.15	180	0	0	
3	800	2.0202	800.3	180	0	0	
4	800	3.0303	800.45	180	0	0	
5	800	4.0404	800.61	180	0	0	
6	800	5.0505	800.76	180	0	0	
7	800	6.0606	800.91	180	0	0	
8	800	7.0707	801.06	180	0	0	
9	800	8.0808	801.21	180	0	0	
10	800	9.0909	801.36	180	0	0	
11	800	10.101	801.52	180	0	0	
12	800	11.111	801.67	180	0	0	
13	800	12.121	801.82	180	0	0	
14	800	13.131	801.97	180	0	0	
15	800	14.141	802.12	180	0	0	
16	800	15.152	802.27	180	0	0	
17	800	16.162	802.42	180	0	0	
18	800	17.172	802.58	180	0	0	
19	800	18.182	802.73	180	0	0	
20	800	19.192	802.88	180	0	0	
21	800	20.202	803.03	180	0	0	
22	800	21.212	803.18	180	0	0	
23	800	22.222	803.33	180	0	0	
	\leftarrow	final	+				

ALL'S WELL THAT ENDS WELL !!!

THANK YOU